
Дистрибуирани софтверски системи
Технички факултет "Михајло Пупин" Зрењанин, Универзитет у Новом Саду
Скрипта за лабораторијске вежбе #04 [нерецензирани материјал]

1

Introduction to Servlets

Web or application server acts as a middle layer between requests coming from Web browsers or other
HTTP clients and databases or applications on the HTTP server. Tasks of web applications:

 Read explicit data from clients (for example, data from a HTML form on a Web page).

 Read the implicit HTTP request data sent by a web browser (behind-the-scenes HTTP information,
like cookies, media types and compression schemes).

 Generate and present data within a document (HTML or JSP).

 Send the implicit HTTP response data (behind-the-scenes HTTP information. like setting cookies
and caching parameters).

Basic Servlet structure

A basic servlet handles GET requests. GET requests are the usual type of browser HTTP requests for Web
pages generated in the following cases:

 User enters a URL on the address line.

 User follows a link on a web page

 User submits a HTML form that either does not specify a method or specifies METHOD="GET".

Servlets can also easily handle POST requests, which are generated when a user submits an HTML form that
specifies METHOD="POST".

Servlet basic template:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ServletTemplate extends HttpServlet {

public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

PrintWriter out = response.getWriter();
pw.println("Hello World from doGet method in my first servlet");

}

public void doPost(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

PrintWriter out = response.getWriter();
pw.println("Hello World from doPost method in my first servlet");

}

}



Дистрибуирани софтверски системи
Технички факултет "Михајло Пупин" Зрењанин, Универзитет у Новом Саду
Скрипта за лабораторијске вежбе #04 [нерецензирани материјал]

2

Servlets extend class HttpServlet and override doGet or doPost, depending on whether the data is being
sent by GET or by POST methods. If you want a servlet to take the same action for both GET and POST
requests, simply have doGet call doPost, or vice versa.

Methods doGet and doPost

Both doGet and doPost take two arguments:

 HttpServletRequest - used for getting all incoming data:

o Form data,

o HTTP request headers,

o The client’s hostname.

 HttpServletResponse - used for specifying outgoing information to clients such as:

o HTTP status codes (200, 404, etc.),

o Response headers (Content-Type, Set-Cookie, etc.),

o Document content by obtaining a PrintWriter for preparing and sending back data to
the client.

За више детаља о класи HttpServlet треба проучити Servlet 4.0 API спецификацију на адреси

https://tomcat.apache.org/tomcat-9.0-doc/servletapi/overview-summary.html

са посебним освртом на класу HttpServlet:

https://tomcat.apache.org/tomcat-9.0-doc/servletapi/index.html

Servlet life cycle

Only a single instance of each servlet is created, while each user request results in a new thread that is
handed off to doGet or doPost as appropriate.

When the servlet is first created, its init method is invoked, which is used for one-time setup code. After
this, each user request results in a thread that calls the service method of the previously created
instance. Multiple concurrent requests normally result in multiple threads calling service
simultaneously. In some cases a servlet can implement a special interface SingleThreadModel that
stipulates that allows a single thread to be run at any time. The service method then calls doGet, doPost,
or another doXxx (doPut, doDelete) method, depending on the type of HTTP request it received.
When the server decides to unload a servlet, it calls the servlet’s destroy method.

Method init is called when a servlet is loaded to a web server, and it is used for configuring the servlet
for the next HTTP calls. For example, it can be used for setting cookies, setting up a connection to database
etc. When there is no need to work with the servlet, destroy method is invoked, which enables saving
files, closing connections to databases etc. However, it is better to do all these activities with specially
created methods.

NOTE: Life cycle methods such as init method or destroy method should be called by the servlet
container (e.g. Tomcat). The advice is not to call them within the code. They can contain code, but the next
advice is to do all necessary initialization and clean up with specially created methods that are called from
the servlet doGet or doPost methods.



Дистрибуирани софтверски системи
Технички факултет "Михајло Пупин" Зрењанин, Универзитет у Новом Саду
Скрипта за лабораторијске вежбе #04 [нерецензирани материјал]

3

Literature and Links

[1] The Apache Tomcat. http://tomcat.apache.org/

[2] Marty Hall and Larry Brown. Core Servlets and JavaServer Pages, Free Online Version of Second Edition.
http://pdf.coreservlets.com/

[3] https://tomcat.apache.org/tomcat-9.0-doc/servletapi/overview-summary.html

[4] https://tomcat.apache.org/tomcat-9.0-doc/servletapi/index.html.

[5] Marty Hall and Larry Brown. Core Servlets and JavaServer Pages, Free Online Version of Second Edition.
http://pdf.coreservlets.com/


	Introduction to Servlets
	Basic Servlet structure
	Methods doGet and doPost

	Servlet life cycle
	Literature and Links


